- 1. The unconfined compressive strength of a saturated clay sample is 54 KPa.If a square footing of size 4 m x 4 m is resting on the surface of a deposit of the above clay, the ultimate bearing capacity of the footing (as per Terzaghi's equation) is
 - a) 1600 kPa
 - b) 315 kPa
 - c) 27 kPa
 - d) 54 kPa
 - Ans:c
- 2. A plate load test is carried out on a 300 mm \times 300 mm plate placed at 2 m below the ground level to determine the bearing capacity of a 2 m \times 2 m footing placed at same depth of 2 m on a homogeneous sand deposit extending 10 m below ground. The ground water table is 3m below the ground level. Which of the following factors does_not require a correction to the bearing capacity determined based on the load test?
 - a) Absence of the overburden pressure during the test
 - b) Size of the plate is much smaller than the footing size
 - c) Influence of the ground water table
 - d) Settlement is recorded only over a limited period of one or two days Ans: c
- 3. A column is supported on a footing of size 1.5m*3.0m located on sand stratum.(Y=18kN/m3, N_q=24, N_Y =20)The depth of footing is 1m from ground level.(Given The water table is at a depth of 10m below the base of the footing).The net ultimate bearing capacity (kN/m²) of the footing based on Terzaghi's bearing capacity equation is
 - a) 216
 - b) 432
 - c) 630
 - d) 846
 - Ans: c

- 4. A column is supported on a footing of size 1.5m*3.0m located on sand stratum.(Υ =18kN/m3, N_q=24, N_Y =20)The depth of footing is 1m from ground level.(Given The water table is at a depth of 10m below the base of the footing). The safe load (kN) that the footing can carry with a factor of safety 3 is
- a) 282
- b) 648
- c) 945
- d) 1269
 - Ans: c
- 5. The bearing capacity of a rectangular footing of plan dimensions $1.5 \text{ m} \times 3 \text{ m}$ resting on the surface of a sand deposit was estimated as 600 kN/m² when the water table is far below the base of the footing. The bearing capacities in kN/m² when the water level rises to depths of 3 m, 1.5 m and 0.5 m below the base of the footing are
 - a) 600, 600, 400
 - b) 600, 450, 350
 - c) 600, 500, 250
 - d) 600, 400, 250

Ans: a

- 6. An embankment is to be constructed with a granular soil (bulk unit weight = 20 kN/m^3) on a saturated clayey silt deposit (undrained shear strength = 25 kPa). Assuming undrained general shear failure and bearing capacity factor of 5.7, the maximum height (in m) of the embankment at the point of failure is
 - a) 7.1
 - b) 5.0
 - c) 4.5
 - d) 2.5
 - Ans: a
- 7. Likelihood of general shear failure for an isolated footing in sand decreases with
 - a) decreasing footing depth
 - b) decreasing inter-granular packing of the sand

- c) increasing footing width
- d) decreasing soil grain compressibility Ans: b
- 8. The unconfined compressive strength of a saturated clay sample is 54 KPa. The value of cohension for the clay is
 - a) Zero
 - b) 13.5 KPa
 - c) 27 KPa
 - d) 54 KPa

Ans:c

- 9. A strip footing is resting on the surface of a purely clayey soil deposit. If the width of the footing is doubled, the ultimate bearing capacity of the soil
 - a) becomes double
 - b) becomes half
 - c) becomes four-times
 - d) remains the same
 - Ans: d

10.Four columns of a building are to be located within a plot size of 10 m x 10 m. The expected load on each column is 4000 kN. Allowable bearing capacity of the soil deposit is 100 kN/m². The type of foundation best suited is

- a) isolated footing
- b) raft foundation
- c) pile foundation
- d) combined footing

Ans: c